
J O U R N A L  OF  M A T E R I A L S  S C I E N C E  14 ( 1 9 7 9 )  5 0 9 - 5 3 4  

Review 
Quantitative fractography 

J. L. CHERMANT,  M. COSTER 
Laboratoire de Cristallographie et Chimie du Solide, L. A. No. 251, Equipe Mat#riaux- 
Microstructure, ISMRA-Universit# de Caen, 14032 Caen Cedex, France 

In many disciplines, such as biology, botany, geology, materials science and medicine, 
quantitative image analysis is being used to an increasing extent. In materials science this 
technique makes it possible to relate the microsctructure to the mechanical properties. 
In this review we shall show that image analysis can be applied in a fractographic study 
to characterize quantitatively the morphology of fracture. Such an analysis provides 
information which, together with that obtained by mechanical tests, enables an explan- 
ation of the mechanism of rupture to be made. 

The different problems encountered in quantitative fractography - analysis of fracture 
paths or of fractured surfaces - are presented, and the concept of mean plane of fracture 
is introduced. Whatever the type of analysis used, a small number of parameters exist 
which can be used to determine the size and proportion present of the different fracture 
morphologies. Then the stereometric relationships, first established for plane sections, are 
modified as a function of the morphology of the fracture surface. Methods based on the 
notion of linear roughness and on fractal object allow a quantitative description of the 
morphology of the fracture paths. A criticism is also made of the different types of 
analysis - manual, semi-automatic and automatic - used in quantitative fractography. 
Finally, some examples are given to show what kinds of investigations are possible using 
quantitative fractography. 

Nomenclature 
Geometric parameters 
A area (plane) 
A' projected area 
D(/) diameter of equivalent sphere of class i 
d( i )  diameter of equivalent circle of class i 
H distance between two planes, tangent to a 

given object 
L length 
L '  projected length 
L2 mean chord in space R2 
L3 mean chord in space R3 
Lp perimeter 
k curvature 
a major axis of ellipsoid of revolution 
b small axis of ellipsoid of revolution 
e eccentricity of ellipsoid of revolution 
t thickness of the thin film analysed 
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Specific parameters 
Pp fraction of points 
P~ fraction of projected points 
Vv volume fraction 
N v number of objects per unit volume 
Lv length per unit volume 
Sv (curved) surface per unit volume 
PA number of points per unit area 
N A number of objects per unit area 
N~ number of projected object per unit area 
A A areal fraction 
A~ fraction of projected surface 
LA length per unit area 
L~ projectedlength per unit area 
NL number of objects per unit length 
N~ number of objects per unit projected length 
L L fraction of length 
L~ fraction of projected length 
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Ls length per unit of curved surface 
Ns number of objects per unit curved surface 
Ss fraction of curved surface 

Parameters of quantitative fractography 
itself 
K fraction of fracture nominally flat 
E thickness of plastic zone 
RL linear roughness index, according to Pickens 

and Gufland 
Ps waveiness or linear index, according to 

Chermant, Coster and Osterstock 
A discrepancy parameter at rupture 
p ratio of value measured on fracture surface 

to those measured on a polished surface 
Dc critical diameter 

of mathematical morphology [4 -6 ] .  This new 
concept considerably enriches the potential of 
image analysis. 

On the other hand the literature on quantitative 
analysis of rupture surfaces is much more limited. 
Apart from the theoretical work of E1 Soudani 
[7], Coster [8], Chermant et al. [9], and some 

.works on the study of fracture of materials, there 
has been little published in this field. One reason 
for this is certainly the fact that it is impossible to 
analyse a fractograph with automatic instruments. 
In spite of these difficulties quantitative fracto- 
graphy should be developed because it permits a 
comparison of the morphology of a material with 
that of fracture, and thus complements the infor- 
mation that can be obtained by fracture mechanics. 

Other parameters 
Ld) 
X 
x 

h 
r 

h'  
B 
~(h) 

O'rf 

/~WC 

Kic 

Saltykov coefficient 
geometrical set to be analysed 
position of the structuring element 
measurement step size 
size of the structuring element 
projection of step of size h 
structuring element 
variogram function 
mathematical probability 
fractal dimension 
rupture stress in bending 
mean free path in the cobalt phase 
mean diameter of tungsten carbide crystals 
critical stress intensity factor 

1. Introduction 
For a number of years, the mechanical properties 
of materials have been studied with ever greater 
accuracy. The progress made in the field of frac- 
ture mechanics has enabled a better understanding 
of the behaviour of these materials to rupture. 
Nevertheless the theoretical models proposed and 
the experimental results are not always sufficient 
to enable a correct interpretation of the results if 
the morphology and features of fracture are not 
known sufficiently well, if  that is quantitatively 
possible. 

It is possible at the present time to describe 
quantitatively, quite satisfactorily, the morpho- 
logy of the majority of materials, either from a 
surface analysis or analysis of thin films. The 
methods are described in general publications 
[1 -3 ] .  A new concept of image analysis has de- 
veloped over the last few years, based on principles 

2. Methods of observation 
When a material is fractured it is possible to study 
the fracture surface or, in the case of plate speci- 
mens, the intersection of the fracture surface with 
the specimen surface. This is termed the "line of 
fracture" or fracture path. 

In the majority of cases the fracture surface is 
non-planar. It is therefore necessary that the me- 
thod of observation chosen has a depth of focus 
sufficient for all points of the fracture surface to 
be in focus (focusing screen of the microscope, TV 
screen, photographic plate). Hence it is scarcely 
possible to use optical microscopy. On the other 
hand, if low magnifications are used, one could 
employ macrophotographical techniques. For 
higher magnifications, electron microscope replica 
studies can be used or scanning electron micro- 
scopy on the surface observed directly. 

The preparation of replicas can prove difficult 
as it may be impossible to extract the replica 
properly from certain areas. In scanning electron 
microscopy these difficulties do not exist since 
the specimen itself is introduced into the micro- 
scope. 

In both cases there exists the problem of the 
direction of observation relative to the fracture 
surface. This problem will be discussed in the 
following paragraph; first, certain concepts must 
be introduced in order to determine the most 
favourable direction of observation. 

The problem of sampling of the replica has 
been resolved for composite materials of the type 
WC-Co [8,9] as a comparison of the size distri- 
bution measured on replicas and that measured on 
a scanning electron microscope for the same 
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material. Fig. 1 shows that the size distribution 
curves of WC on the fracture surface of a WC-  
6wt% Co  for the two methods are very similar, 
and that the difference between the two is less 
than the errors in the measuring methods (analysis 
made semi-automatically with a Zeiss Analyser 
TGZ3). This result demonstrates that no falsifi- 
cation in the results takes place during extraction 
of the replica. This does not imply that for other 
specimens falsification does not arise. It is neces- 
sary therefore to verify this for each material. 

Apart from the difficulties of replica sampling, 
scanning electron microscopy offers other advan- 
tages, in particular with suitable accessories it is 
possible to obtain X-ray images of the fracture, 
which give complementary information regarding 
the distribution of different atomic elements on 
the fracture surface. This problem will be dis- 
cussed again in the critical review of measurable 
parameters. 

When the fracture line is observed in a paraUele- 
piped specimen, the line of fracture lies in the 
plane of the specimen if the plastic deformation 
before fracture is not too large, e.g. brittle ma- 
terials (in this case the outer fibre is always con- 
sidered as plane). Otherwise the quantitative 
fracture analysis is very difficult. It is thus possible 
in these brittle materials to use optical microscopy 
at least for moderate magnifications. On the other 
hand if larger magnifications are necessary or if 
appreciable deformation occurred before fracture, 
it is preferable to use a scanning electron micro- 
scope. 

3.  P rob lems  in the  analysis o f  f rac ture  
surfaces 

As mentioned in the previous paragraph, a fracture 
surface is generally not planar and if this presents 

Figure 1 Comparison of distribution 
curves for WC crystals in a fracture 
surface of a WC-Co anvil, with Co 
6wt%, in the scanning electron 
microscope and by replica. 

problems in observation, the same applies to the 
quantitative analysis of the microstructural feature 
of fracture. The first problem to be resolved is 
what direction of observation should be employed 
to make a quantitative fractographic analysis? 
Before an answer can be given, it is necessary to 
examine quantitatively the rupture surface mor- 
phologies which could arise. 

3.1. Classification of fracture surfaces 
E1 Soudani in his theoretical article has proposed a 
classification [7]. He introduced first the concept 
of a surface intersecting the fracture surface such 
that the volume of the solid above the dividing sur- 
face is equal to the total volume of hollows below 
it. Based on this dividing surface, he has defined 
several possible morphlogies (Fig. 2). 

(a) Ideally fiat fracture surface, with coincides 
at all points with its dividing plane. 

(b)Nominally fiat fracture surface, in which 
the dividing surface is planar. 

(c) Random-curvature fracture surface, in which 
the surface normal can assume any direction. 

(d) Stepped fracture surface, often observed in 
cases of brittle fracture. 

(e)Zigzagging fracture surface, observed, for 
example, in the case of complex states of stress at 
the crack tip or when more than one mode of 
fracture is operative. 

(f) Complex fracture surface, which is a com- 
bination of the above types. 

This classification is interesting, but the classifi- 
cation of an actual fracture surface is a question of 
magnification. For example, a fracture surface 
could appear to be nominally flat at low magnifi- 
cations and yet at higher magnifications appears 
random (see for example a razor blade). As E1 
Soudani also indicated, it is necessary to specify 
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Figure 2 Morphology of the various fracture features, 
after E1 Soudani. 

the magnification at which the classification was 
made. Fig. 2 shows the position of the mean sur- 
face with respect to the fracture surface. 

3.2.  Choice of  d i rec t ion  of  observat ion  
If we assume that the direction of observation 
ought to be perpendicular to the surface, this is 
uniquely defined if the surface is fiat (always the 
case in metallography). In fractography, however, 
an ideally flat surface is virtually never observed. 
In the various morphologies defined by E1 Soudani 
it can be seen that the dividing surface is flat for 
the case of  nominally fiat fracture surfaces, step- 
ped fracture surfaces and zigzagging fracture 
surfaces. For these three types one could take as 
the observation direction the normal to the planar 
dividing surface. In random fracture surfaces or 
complex fracture surfaces the concept of the 
dividing surface is insufficient as far as defining the 
direction of observation is concerned, It is neces- 
sary to introduce the concept of a mean plane 
defined as a plane cutting the dividing surface such 
that the volumes above and below the mean plane 

are equal. This mean plane is hence an extension 
of the concept of the dividing surface proposed 
initially. Thus the direction of observation can 
always be defined as the normal to the mean 
fracture plane, irrespective of the morphology of 
fracture. 

The practical problem for the experimenter is 
to determine as accurately as possible this mean 
fracture plane. We shall see that the solution to 
this problem depends upon the means of obser- 
vation-transmission electron microscope or scan- 
ning electron microscope. In transmission electron 
microscopy, a replica is examined, which is sup- 
ported on a grid. The replica always sags and the 
projection of the surfaces always lies in the plane 
of the grid. Therefore as far as fractography is 
concerned the direction of observation is imposed 
by the apparatus, being normal to the grid. It will 
be seen that the mean fracture plane is in the zone 
virtually always considered parallel to the grid. 
In the scanning electron microscope, where 
one observes the fracture directly, it is necessary 
to apply certain rules to choose the direction of 
observation. The recommended method is the 
following (i) the fracture surface is observed under 
the lowest available magnification (or at a magnifi- 
cation such that the whole fracture surface appears 
on the cathode ray screen), (ii) the specimen is 
oriented such that the fracture surface exhibits the 
least possible relief; the recommended direction of 
observation is thus defined. 

3.3. Validity and limits of the laws of 
stereology: stereometric relations 

The morphological characteristics of materials are 
defined in three dimensional space. Stereology 
attempts to establish relationships between the 
results obtained in a two dimensional analysis 
(R2) and the true three-dimensional microstruc- 
tural parameters [3]. The stereometric relation- 
ships depend on the mode of observation: they 
have been established for measurements on an 
image obtained by reflection of a planar section, 
whereas the image in transmission is the projected 
image of objects contained in a thin film. 

The measurable parameters in these two ex- 
amples are of two types. Firstly here are parameters 
which correspond to mean values and secondly 
parameters which correspond to distributions. 
These parameters depend on the method of obser- 
vation. 
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TABLE I General relationships in stereology for the case of a section 

Unknown quantities Volume, V V Surface, S V Length, L v Number, N V 
in R3 space 

Quantities Surface, A Fraction of area Length of line Number of Number of objects 
measurable occupied, A A per unit area L A points per unit per unit area, N A 
in R2 space area, PA 

Length, L Fraction of line Number of intersections 
occupied, L L per unit length,N L 

Points, P Fraction of points 
Pp 

"~ * s  = 2PA Stereometric ill" =/~L = / IA = F'V /SA = ~ L 
relationships 

Cv 
NL SV = 4_/r A 

SV = 2/VL* 

]V A = N v D  V 

*As defined according to Underwood. 

TABLE II General relationships in stereology for a thin •m analysed in projection. 

Unknown quantities Volume, V V Surface S V Length L V Number, N V 
in R3 space 

Quantities Surface, A Projected Perimeter of projection 
measurable surface, per unit surface, L~ 
in R 2 space A~, 

Number of projected objects 
per unit surface, N~ 

Length, L Fraction of projected Number of projected objects 
chord, L~ per unit length, N~ 

Point, P Fraction of projected 
points, P~, 

Stereometfic Vv =A'AL3/t  ffV = 4 "4'A I V  4 [/A 
relationships = - - -  

t n t 

LA ~ A 

Nv =Nk l t  
~k  = YJ'. = ~L/t 

Tables I and II show the principal parameters 

measuring mean values either from analysis of  a 
section or a thin f'dm. Obviously other parameters 
can be derived by  combined principal parameters.  

The tables give a general overview of  the relation- 
ships between measurable quantities and the 
quantities contained in the volume. It  can be seen 
that  the transit ion from n to (n + 1) dimensions is 
made only vertically in each column. Thus it is 
evident that N v  is a quanti ty inaccessible to 
section analysis, whereas Vv is inaccessible to thin 
film analysis. To obtain these quantities it is 

necessary to make a hypothesis  and construct  a 
model.  

3.4. Application of stereometric analysis 
of a fracture surface without 
preconceived hypothesis 

In the case of  analysis of  fracture surface, the 
image is no longer planar and the laws established 

for sections have to be revised. In general terms 
the laws we shall present or derive are valid for 
random fracture lines, but  without  any re-entrant 
parts. 

E1 Soudani first showed that for such fracture 
types the fraction of  surface occupied by an 
object or a type of  fracture is equal to the areal 
fraction, fraction of  line or points,  measured on 
the projected image : 

S s = A• = L~, = P~ (1) 

where S s is the fraction o f  surface occupied by the 
phase or type of  fracture, 

A ~  is the areal fraction of  the projected image, 
L~ is the lineal fraction o f  the normal image, 
P{, is the point  fraction of  the projected image. 
This law thus enables one to calculate the 

propor t ion of  brittle or ductile fracture, or the 
propor t ion of  transgranular or intergranular frac- 
ture, if  the limits are distinguishable in the image. 

513 



fracture surface 

projected image 
N'L - - - - - - .  - - - - - r - -  

..... " 7  
line of analysis 

object 

Figure 3 Parameters measured on projected images. 

This type of relationship is valid for both nomin- 
ally flat and random fracture surfaces. 

It is known that the image projected on to the 
mean plane of fracture does not give directly the 
actual dimensions of the features (surface area or 
length). It is thus not possible to establish from 
these images the fracture characteristics per unit 
length or unit surface, using the relationships 
derived for plane sections. On the other hand some 
relationships established for projected images can 
be applied in the case of fracture surfaces, under 
certain conditions (Fig. 3). 

I f  a random fracture surface, without re-entrant 
or overlapping curvatures, is considered, the same 
situation arises when analysing an open surface 
by projection. Kendall and Moran [10] have 
shown that an open surface of this type has an 
area double that of its image obtained by pro- 
jection: 

S = 2A' (2) 

This relationship was also established by E1 
Soudani [7]. 

Still considering Fig. 3, a line "L" traced on 
the surface is projected on to the plane of analysis 
as a line "L' ". Since the orientation is random, the 
line randomly traced on the surface is likewise 
random in the volume which contains this surface. 
For this case Underwood has shown that [3] : 

4 
r = - L'  (3) 

7r 
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The number of intersections or objects per unit 
length can thus be calculated. If there are N 
objects, then: 

N N ~  1 = T r N ,  
Nt'  = L = 4 L  -7 4 L 

(4) 

If  this random fracture surface contains charac- 
teristic features (intersections of grain surface 
with fracture surface, rivers patterns in the case of 
brittle fracture), it is thus possible to calculate the 
length of these fractures per unit area of fracture 
surface. One obtains from Equations 2 and 3: 

L 4 1 2 L'  
_ L ! _ _  

S 7r 2A' ~ A' 

from where: 

! 

Ls = - LA (5) 
7T 

Similarly the number of features per unit fracture 
surface can be deduced from Equation 2, if the 
number of particles per unit projected area, N'A, 
is known: 

Ns = (6) 
2 

The mean length of these features can be calcu- 
lated from a linear analysis. For a plane surface: 

VV A A  
L2 - NL NL 

In the case of a fracture surface therefore: 

Ss 4 Ak 
- -  t L2 N L  7r N L (7) 

We have thus established the majority of the stereo- 
metric relationships defining the mean quantities 
on a random fracture surface. It  is also interesting 
to know, for example, the distribution of particle 
size appearing in the fracture surface. Here there is 
the problem of the method of measurement, 
especially in the case of intergranular fracture. In 
an intergranular fracture, the fracture more or 
less skirts the grain (Fig. 4); the fracture surface 
and the enclosed surface determine a closed line 
of which the projection is only seen. Knowing 
the size of the enclosed line it can be reasoned 
that it is contained in a mean secant plane. Granu- 
lometry analysis consists therefore, in measuring 
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Figure 4 Projection of an intergranular fracture. 

the size o f  the area enclosed by the dosed curve, 
and this is particularly useful in the case o f  inter- 
granular fracture. As in the case of  quantitative 
metallography, one has the choice between surface 
analysis and linear analysis. The classification can 
be made of  either the projected area or the chord 
length obtained by intersection o f  an analysis line 
and the projected image. Measurement is made 
according to a method comparable to that for a 
section, and the true value o f  the chord length or 
area is obtained using stereometric relationships. 

In the case o f  measurement of  traverses, the 
relationship existing between a line contained in 
a randomly oriented plane and its projection has 
been given by Kendall and Moran [10] as: 

L = rr L' .  
2 

Therefore all the distributions of  traverses are 
translated by a factor 7r/2 on the abscissa. 

For granulometric measures using the areal 
method, it can be shown similarly that: 

Ap _ 2,4 [rr/2 
- -  cos 0 dO 
7r ~ 0  

from where: 

2A A t _ _ _ _  
7r 

7r A , A = ~ (9) 

Likewise it is observed that all areal distributions 
are translated by rr/2. 

All the equations, as we shall show, are valid 
solely for random fracture. In nominally plane 
fracture Relationship 1 remains valid, but on the 
other hand Relationship 2 is no longer valid as 
the fracture surface has a preferred orientation 
parallel to the plane of  observation [7]:  

A < S < 2A (10) 

The same applies for all the other quantities calcu- 
lated above, as can be seen in Table III. It should 

be noted that for an ideally flat fracture surface, 
all the relationships derived for sections are valid. 
They are summarized in Table III.  It can be seen 
that for a nominally flat fracture surface the 
parameters are included between those for an 
ideally flat fracture and a random fracture surface. 
The calculation of  these parameters are assumed 
for a nominally fiat fracture surface only if  as- 
sumptions as to the morphology of  the fracture 
are made. 

T A B L E I I I Stereologic relationships for fracture surfaces 

Type of fracture surface Ideally flat Nominally flat Random 

S s A)~ = LL = Pb A)~ = LL = Pb A • = LL = Pb 

S A' (2 --K)A'  2A' 

K0r --4) + 4 4 
L L' L' - L '  

K + I  Nk 
X s N~ - - X  k 

2 2 

N L N~ K (4 -- ~r) + ~r N~ ~r N'  
4 ~ r, 

Ls Lk K(rr--2) + 2 Lk _2 LA 
/r  7i" 
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The results obtained for different morphologies 
are only valid if it is assumed that the fracture sur- 
face is a homogeneous function of three-dimen- 
sional space (R3)[11] :  strictly this case is never 
realized in practice, but it is assumed as a first 
approximation. 

The comments regarding the first three fracture 
morphologies are no longer strictly valid for stepped 
or zigzagged fracture surfaces. 

3.5. Extension of stereometric relationships 
to fracture surfaces, wi th hypotheses 
on the morphology 

As we have seen, there are a numerous cases where 
quantitative analysis is scarcely possible without a 
preconceived hypothesis. 

3.5.1. Quasi-ideally flat fracture surface 
It can be assumed that a macroscopically fiat 
fracture surface will remain so at the microscopic 
scale if the roughness is of the same order as the 
grain size or particles composing the material, 
if these are sufficiently small. This is the case for 
brittle fracture of a large number of ceramic ma- 
terials or refractory carbides. 

3.5.2. Nominally flat fracture surface 
In order to calculate the parameters defining a 
nominally flat fracture surface, it is necessary to 
assume that this type of fracture can be subdivided 
into two other types: 

(a) an ideally flat fracture surface which would 
have the same dividing surface; 

(b) a random fracture surface. 
If the proportion of each type is known, it 

is possible to calculate the parameters defined 
above. To obtain this proportion it is necessary 
to know the average profile of the fracture. Since 
the methods are the same as those used to analyse 
the line of fracture, we shall discuss them together. 

In a nominally flat fracture surface a certain 
proportion corresponds to an ideally flat fracture 
surface. If K is this fraction, then the fraction of 
random fracture is (1 - -K) .  The profile of such 
a fracture of  length L and projection L' is calcu- 
lated from the expression: 

L = KL'+(1--K) 4L ' 
7r 

from which is obtained: 

rtL -- 4L r 
K = (Tr--4)L' (11) 

K can thus be calculated after measuring the pro- 
file and its projection. Knowing K, it is possible to 
calculate the other expressions listed in Table III. 

3.5.3. Stepped or zigzagging fracture 
surface 

Unlike the previous cases, the calculations are not 
valid when the fracture surface is not random. 
Each type of fracture corresponding to this 
calculation must be studied individually either by 
subdividing the surface to obtain one of the classi- 
fications described above or by making some 
assumption as to the morphology. In particular, 
the stepped fracture could be considered as a 
flat fracture, and the analysis of the profile would 
provide information on the step height. 

3.6. Examples of stereological models 
applicable to fractography 

We have shown that as a result of certain pre- 
cautions and possibly corrections, it is possible to 
obtain the surface distribution of particle sizes 
seen in the fracture. It can be interesting to know 
the size distribution not in the surface but ex- 
pressed by a parameter defining the true size of the 
particles. A critical study of some correction 
methods has already been described [9]. The 
Saltykov correction method [1] offers the advan- 
tage on the one hand of a logarithmic distribution 
of classes (the numerous size distribution curves 
approximate in effect a logarithmic distribution 
law) and on the other hand of being less sensitive 
to non-sphericity of particles than the methods 
using linear analysis. In the Saltykov method one 
calculates first the probability with which spheres 
of size (/) are cut by a random plane according to 
a circle which belong to the class ( i - - j ) .  This 
probability is such that the areal fraction occupied 
by the class ( i - j )  is proportional to the areal 
fraction occupied by class (i). Saltykov have shown 
that this coefficient of proportionality does not 
depend on the separation between classes (/) and 
( i - - / ) ,  i.e. depends only on (j). This is a con- 
sequence of the choice of the geometric progression 
for the classes. The coefficients are called Lj. Thus 
knowing the distribution of equivalent circles, 
one can calculate the distribution of the diameters 
of the equivalent sphere from the number of 
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particles per unit volume using the equation: 
k - i  

[d2(i)N(i)] Zd2(0N(/)] [ Vv/L(o)][1 --~ n j~ 1 L ( j )Nv( i  + ])D 3 (i + ])] 

Nv(i) = ~ lrD 3 (i) 02) 

where 

d(i) 

Dq) 

1,(j) 
Wv(O 

Vv 

is the diameter of  equivalent circle of  
class (0, 
is the diameter of equivalent sphere of 
class (/), 
are the Saltykov coefficients, 
is the number of  particles per unit 
volume, 
is the volume fraction of particles. 

Using similar reasoning as Saltykov, we have 
derived [8] an expression to calculate the distri- 
bution of  number of particles per unit surface, 
having a given diameter of equivalent sphere. The 
expression relating N v and N A is thus: 

NA(i ) = 

~Nv( i )D3( i )[D~)  
, Lu)] 

+E(O) 
(13) 

This expression can be applied to fracture surfaces 
assuming that each particle is cut randomly in 
the case of transgranular fracture, or that the 
average fracture plane intersects the particle 
randomly in the case of intergranular fracture. 
This is not the same as saying that the fracture is a 
random fracture; it is only random as far as the 
~article is concerned (Fig. 4). 

3.7. Estimation of the volume fraction of 
cavities in the plastically deformed 
zone 

A study of the cavities, which form (or are there 
already) in the plastic zone and which surround 
the fracture surface, is necessary to understand 
fracture. El Soudani [7] has derived various 
expressions to calculate the volume fraction of 
voids or cavities for the majority of cases which 
are likely to arise. 

Fig. 5 shows a fracture zone containing voids 
and explains the significance of the various para- 
meters used by E1 Soudani [7]. To facilitate the 
calculations he considered that the plastic zone is 
limited by two parallel planes one on each side of 
the fracture. Inside this zone he defines a volume 
for analysis by a further two planes, parallel to 
the original planes and located into the plastic 
z o n e .  

Several situations can arise: 
(1) the cavities are all within the zone of analy- 

sis and no voids are truncated. In the opposite 
situation some cavities are truncated. 

(2) all the cavities are truncated by the line of 
fracture, and there are no hidden cavities. If  not all 
cavities are truncated, some will remain unde- 
tected. 

It is possible to present the various possibilities 
making the general hypothesis that the cavities, 
when cut by the fracture, are cut through their 
centre, i.e. their largest diameter. 

L l 
- - . - - - -  

LP 

E 

\ 

l i m i t  of p las t i c  zone LP 

t r u n c a t i o n  region TR 

m a x i m u m  p r o f i l e  he i gh t  

size of  p l a s t i c  zone 

f r a c t u r e  s u r f a c e  

void 

Hm 

Figure 5 Schematic representation of a fracture encountering cavities in the zone of plastic deformation in the vicinity 
of the fracture, after E1 Soudani. 

517 



LP 

" TR 

. . . . . . . . . .  T R  

LP 

voids w i t h o u t  o v e r l a p p i n g  
or t r u n c a t i o n  

Figure 6 Fracture without truncated cavities and without 
undetected cavities. 

3.7. 1. Case in which no cavity is truncated 
and no cavity remains undetected 

In this case the volume fraction has a value (Fig. 6). 

Ss (cavity) L3 (cavity) 
Vv(cavity) = E (14) 

where 

E is the thickness of the plastic zone, 
His  the maximum distance of the tangent 

planes to the fracture surface, parallel to the 
mean fracture direction. 

This equation is applicable in cases of  slow crack 
propagation and low volume fraction of cavities. 

3.7.2. Case in which cavities are not  
truncated but  remain hidden 

In this case (Fig. 7): 

Vv- zfl (is) 
This equation is applicable in the case of  unstable 
fracture and a large volume fraction of cavities. 

3.7.3. Case in which cavities are truncated 
but  do not  remain hidden 

In this case (Fig. 8): 

SsL3 (16) 
Vv =/53 + E  

This equation is applicable in the case of  mean 
rates of crack propagation, as for example in 
steels or aluminium alloys, and in the case of 
cavities volumic fractions up to about 10%. 
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w i t h o u t  t r u n c a t i o n  

Figure 7 Fracture without truncated cavities and with 
undetected cavities. 

LP 

27 " 
LP 

t r u n c a t i o n  vo ids  
w i t h o u t  o v e r l a p p i n g  

Figure 8 Fracture with truncated cavities and without 
undetected cavities. 

3.7.4. Case in which there are both 
truncated and undetected cavities 

In this case (Fig. 9): 

LaSs Sv(tOtal) 
Vv - I53 + E  x Sv(fracture)" (17) 

All these expressions have been derived without 
making any other hypothesis than that the cavities 
are convex and they are intersected by the fracture 
plane, if it exists, as in the analysis of thin films. 

Note ~that the volume fraction can only be 
calculated if assumptions are made as to the shape 
of the cavities. In effect, if the quantity E can be 
obtained from the fracture mechanics data, then 
/53 and H can only be obtained by making assump- 
tions as to the shape of the cavities. To assume 
that the cavities are spherical would be an over- 
simplification since the majority of fractographic 
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LP 

voids with truncation 
and overlapping 

Figure 9 Fracture with truncated cavities and with un- 
detected cavities. 

Figure 10 Fractography of a ductile fracture in an alloy 
TA6V. 

studies of ductile failure show the cavities to be 
ellipsoids. Furthermore the prolate spheroids are 
elongated rather than flattened (Fig. 10). 

For such cavities, if the eccentricity of these 
ellipsoids is known, it is possible to calculate L3. 
If a is the major axis and b the minor, the volume 
o f  the ellipsoid is: 

V = ~zra2b. (18) 

The surface area of the ellipsoid is: 

S = 27rb 2 + 2nabsin-1 e (19) 
e 

where e is the eccentricity. 
Since/T3 is related to the surface area and volume 
of a body by Equation 3, one can write: 

4V 
f , 3  = - -  ( 2 0 )  

S 

Combining Equations 18, 19 and 20, and assuming 

the ellipsoids to have effectively the same eccen- 
tricity and size, one obtains: 

8 1 - -b  2 
L3 = ~ b2e2 +bsin-a  e x / ( 1 - - b  2) (21) 

should be known as it is the mean diameter of 
circle obtained by intersection of the ellipsoid 
with the fracture surface. 

It should be noted that it is possible to deter- 
mine the volume fraction of cavities in the plastic 
zone by assuming that the fracture path passes 
randomly through randomly distributed and 
oriented cavities (for example the case of rapid 
crack propagation [7] ): 

Vv = Ss (22) 

4. Problems in linear analysis of fracture 
Linear analysis of fracture can provide information 
which often complements that obtained from an 
analysis of the surface. This analysis is facilitated 
if the fractured specimens possess plane faces. 
It is obvious, however, that the fracture lines 
apply only to a particular stress state as only the 
external surface is investigated. 

4.1.  Measurable parameters  
An analysis of the line of fracture is made essen- 
tially by linear analysis techniques. All the para- 
meters measurable in a linear analysis on a section 
can be measured if the specimen surface is flat 
(Fig. 11). For example, the proportion of an 
object, seen by the line of fracture, LL, can be 
calculated, and then the numbers of objects per 
unit length, NL, and the size distribution of the 
objects. It is necessary, however, to realize that 
the meaning of the parameters depends on the 
type of fracture. The various possible situations 
are: either fracture occurs via the objects con- 
sidered (for example brittle fracture by cleavage, 
ductile fracture of a matrix, etc.) or fracture cir- 
cumvents the objects to be analysed (for example 
intergranular fracture, etc.). When fracture occurs 
through the objects to be analysed, there is no 
hypothesis which can be made to determine the 
derived parameters. On the other hand, when 
fracture occurs avoiding the objects, the definitions 
of some parameters can be modified (Table IV). 

As for the proportion of the objects revealed 
by the fracture line, the expression for fracture by 
decohesion can be applied. The same applies for 
the expression for the number of objects per unit 
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LL(t ) LL(d) 

NL(i) intergranular rupture 

LL(i) intergranular rupture  

L L t t ransgranular rtJpture 

L L d d u c t i l e  rup ture  

Figure 11 Parameters measured on 
the fracture line. 

TABLE IV Specific parameters for a fracture line 

L L Fraction of line occupied by a phase or 
type of fracture (transgranular, 
intergranular, ductile, etc.) 

Number of objects per unit length 
(phase, type of fracture, grains, etc.) 

Average size of objects intersected by 
the fracture line. 

L, 

Relation L,  = L L / N  L 

length. On the other hand the parameter L2, 
calculated from ArT. in the analysis of sections, 
no longer has the same meaning. It no longer 
represents the mean chord obtained by intersec- 
tion of a line with an object, but instead the mean 
length of perimeter of  the object revealed by the 
fracture. To avoid confusion with L2 we use 
another letter, Lp(f) .  For the same reasons, it is 
impossible in intergranular fracture to measure 
the size distribution of particles revealed, using 
linear analysis. It  is necessary, for this, to carry 
out measurements on the fracture surface itself. 
On the other hand, in transgranular fracture, the 
grain size distribution cannot be obtained from 
a surface analysis but solely by a linear analysis: 
only a part of  the particle is visible, and the area 
below the polished surface where the fracture 
surface emerges is not known. For random frac- 
tures up to the surface Pickens and Gurland [12] 
have shown that Ls = Ss, and, hence, it is possible 
to deduce the behaviour over the whole surface 
from a study of the fracture path. 

4 .2.  Analys is  o f  t he  m o r p h o l o g y  o f  f r ac tu re  
When the fracture line appears on a flat surface, 
its morphology can be analysed. The section of a 
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fractured specimen exhibits, in the same manner, 
the profile of  the fracture surface on the sectional 
plane. Hence it is possible to identify the type of 
fracture and thus, after quantitative analysis, 
classify the fracture according to the groups d is -  
cussed above. 

The quantitative aspects of  this morphology are 
much more difficult to resolve, because one is 
confronted with the problem of the quantitative 
definition of the shapes. Shapes of  objects can only 
be defined by comparison with geometric shapes 
defined previously. On the other hand the more or 
less wavy appearance of the fracture path can be 
expressed by a parameter. Several authors have 
already attempted a definition of the waviness. 
We shall first review these attempts and then 
propose a new definition. 

Pickens and Gurland [12] proposed a linear 
roughness index, RL, defined as the ratio of  the 
true length of the fracture line to its projected 
length on a reference line. They noted that R E 
depended on the orientation of the reference line. 
Hence for it be unequivocal the reference line 
must be chosen parallel to the mean fracture plane. 
These authors also noted that the apparent rough- 
ness is strongly affected by the magnification used 
and the resolution of the system. Chermant et al. 
[13] proposed a waviness index, Ps,  which is the 
ratio of  the length of the fracture line to the 
length joining the two extremes of the field being 
measured. This index is practically the same as R L. 
It also depends on the magnification (Fig. 12). 

These two parameters are easily measured, but 
provide little information as to the nature of  the 
roughness. 

It is possible to define the morphology of the 



roughness R L 

RL=I,6 3 

RL= 107 

Figure 12 Waviness index. 

TA B L E V Morphological parameters for a fracture line 

R L Linear roughness index 

Ps Waviness index 

- ~  Fractal dimension 

/(  Absolute mean curvature 

/ (  + Mean convex curvature 

/~- Mean concave curvature 

Relation R L -~ PS 

g = (g + + g-)12 

fracture line by its radius of curvature. One could 
attempt to calculate the mean radius of curvature, 
but in this case it is not possible to use the relation- 
ships proposed by Underwood [3], which assumed 
the lines to be positioned randomly on the surface 
being analysed. In our case the line follows more 
or less a preferred direction, and it is necessary to 
return to the definition of radius of  curvature: k = 
da/dl,  where a is the angle subtended by the line 
of  length l. Pickens and Gurland [12] have shown 
that one could calculate the radius of curvature 
automatically by point-by-point analysis of  the 
fracture line. This radius is equal to k = l /r ,  where 
r is the radius of  the circle passing by the extrem- 
ities of  the segment dl and centred on the middle 
of the segment. These authors then give the 
expression to obtain the mean radius of  curvature: 

K ( i )  

R - ~=~ (23 )  
n 

In addition to this mean result, it is possible to 
calculate the distribution of radii of curvature, and 
also calculate separately the distribution of convex 

and concave radii of the fracture as shown in 
Table V. 

Finally, we propose another definition of the 
roughness or waviness of the fracture line. The idea 
is to calculate the fractal dimension of the line of 
fracture. Since the concept of fractal dimension is 
not widespread it will be described in more detail. 

There are a large number of objects which 
cannot be described by geometric figures as they 
are too irregular. Mandelbrot [1 l, 14] has shown 
that one could study these shapes using geometric 
concepts hitherto little used. He studied particu- 
larly irregular shapes, which were very irregular 
and more or less discontinuous: hence the term 
"fractal object". 

The usually observed fracture line is more or 
less regular without any physical discontinuities, 
but with discontinuities in the geometric sense, i.e. 
points where the tangent to the fracture line is 
not defined. The fracture line falls within the scope 
of the conception of "fractal object" given by 
Mandelbrot. To describe the fractal objects, he 
uses the concept of fractal dimension. As a matter 
of fact there are several definitions of the dimen- 
sion. The best known is the topological dimension. 
But to define the fractal dimension Mandelbrot 
has chosen the contents dimension of Hausdorff-  
Besicovitch [15]. An object will be called a fractal 
object if  its contents dimension is always higher 
than its topological dimension. Unfortunately in 
image analysis the contents dimension is not 
accessible. An other concept of fractal dimension 
will therefore be chosen: the covering dimension 
[16]. There are several methods to reach the 
covering dimension. We shall describe the two 
simplest methods which can be used. 
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VON KOCH CURVE 

Figure 13 Von Koch curve. 

4.2. 1. First m e t h o d  
Consider a line, more or less irregular, describing 
a fracture line (Fig. 13), and then measure the 
length of this line, using a finite measurement 
step. The value so obtained is an approximate 
length, and increases if the step size is decreased. 
A large step erodes the majority of the angular 
fluctuations of the line. The measured length is 
then plotted double logarithmically against the 
step size. If, for a given step size, the curve is 
linear (Fig. 14), the fractal dimension of the line 
.~can be calculated from the expression: 

log (Lp~) = (1 --.~) log h (24) 

where h is the measurement step size, and (1 --.~) 
is the slope. 

This method has been used by Richardson to 
follow the evolution of the length of the terrestrial 
coasts, and Mandelbrot [14] showed that this 
method allows to reach the fractal dimension of 

a line. This method correspond to the determi- 
nation of the contents dimension [16], and can 
be used with a digitalization table [17]. 

4.2.2. Second method 
As for this second method, the contents dimension 
of Minkowski is determined in substituting the 
initial fracture line by a tape 2r thick. This process 
is similar to the process of dilation by a circle. 
In order to calculate the approximate length of 
this tape you have to measure the perimeter of  the 
line enclosed by a circular structuring element. 

We have shown that this method can be used 
with an automatic analyser using an iterative 
algorithm based on the principles of the mathem- 
atical morphology [18], provided that a pro- 
cess of skeletonization was carried out on the 
dosed line [19]. 

For a fracture line, the fractal dimension lies 
between 1 and 2. The value is 1 for regular curves, 
with a defined tangent at all points. The value 

Lo I 
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Figure 14 Curves of  log / S p = f ( l o g  h),  
for a Von  Koch curve and a straight line. 



tends to 2 when the line fills all the space in the 
plane. The double logarithmic plot is linear if, for 
the range of step sizes chosen, the fracture line 
can be derivated by internal similarity, i.e. if, on 
changing from a large magnification to a smaller 
one, similar features are observed but on a smaller 
scale. This is always the case for the majority of 
natural seacoast lines, but not so for all fracture 

lines. I f  the curve is essentially linear for three 
scale magnifications, then it can be said that 
for a fracture for which the fractal dimension is 
not constant over most of its length, that this 
is due to one or at the most two physical pheno- 
mena. Thus for pure intergranular fracture, as 
shown in Fig. 15, the double logarithmic plot, 
shown in Fig. 16, is obtained. It is not truly 

t heo re t i ca l  in te rgranu lar  f rac tu re  
Figure 15 Theoretical intergranular 
fracture. 

! 
I o g L p  

2 5 0  

2 0 0  

150  

[-o-o-1 
O p = 0.12 ,~1, D =112 

" - -  " -  u | . . . .  p o.oT.., 6  1o7 

" 0  ~ - - .  - -  . O  - - _ ~ _  1 3 "  - - - - 3 : 3  

. . . . . .  o - .  ~ - - o - _ ~ _ _ ~ .  - o 

I I I I I I 
2~ 5 10 2 0  40  log h 

Figure 16 Fractal dimension of an intergranular fracture. 
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linear. This is due solely to the line of  grain 
boundaries followed by the fracture. 

Even if the fractal dimension of a fracture 
cannot be defined, because too few phenomena 
are responsible for its irregularity, it is still inter- 
esting to have the double logarithmic plot, because 
the slope, at a given point, is a function of the 
irregularity of  the fracture line for the chosen 
scale. We have shown [18] that it is better to use 
the evolution of the linear roughness than the 
evolution of the perimeter. We have also shown 
that the derived curve: 

d log (RI,) 
= f l og  (h) 

d log (h) 

is similar to a spectrum the peaks of which corre- 
spond to the size of the phenomena responsible 
of the irregularity. 

It can be said that this method produces a 
large amount of  information on the rupture, 
and that, if the morphology of the bulk material 
is known, it is possible to explain much better the 
rupture mechanism of materials. 

5. Comparison parameters 
In the previous paragraphs we have shown that the 
same parameters can be measured either on the 
fracture surface, or on the fracture line. The 
different morphological parameters measured or 
calculated are not only interesting in themselves, 
as a direct comparison with the values measured 
or calculated from a polished surface, but also 
provide information leading to a better under- 
standing of the fracture mechanism. It  is for this 
reason that we have defmed comparison parameters 
to underline the differences between the plane 
section and the line or the fracture surface. It is 
not the intention to present an exhaustive list, 
but .  rather to show how these parameters are 
chosen and used. 

To define a discrepancy parameter, which 
has real significance, it is necessary that the para- 
meters measured on the polished surface and the 
fractured surface have the same meaning, and 
obviously are of the same type. For example, one 
can calculate the discrepancy between the amount 
of a phase on the fractured surface and the pol- 
ished surface, whereas the proportion of trans- 
granular fracture, which is measured in the same 
way as the ratio of a phase on the fracture surface, 
cannot lead to any discrepancy parameter since 
there is no equivalent measurement on the pol- 
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ished surface. The first discrepancy parameter, we 
used, was just the discrepancy, A, between the 
proportion of a phase on the fracture surface and 
the polished surface [13] : 

AA (fracture surface) 
A(AA) = -- 1 (25) 

AA (polished surface) 

For the other mean specific parameters, measured 
equally well on the fracture surface as on a section, 
it is preferable to use their ratio as comparison 
parameter. Thus one can define: 

P(NL) = NL (rupture) 
NL (polished surface) (26) 

where Nt, can be the number of  crystals per unit 
length, and: 

p(NA ) = N s (rupture) (27) 
NA (polished surface) 

where N A can be the number of  crystals per unit 
surface area. 

These various parameters have the following 
meanings: 

(1) For A, a positive value shows that a phase 
appears preferentially on the fracture surface, 
the more so the larger is A. A negative value of & 
shows that the fracture avoids to a certain extent 
a particular phase. 

(2) For p, a value less than 1 shows that frac- 
ture proceeds preferentially in the large crystals, 
and more so the smaller is p. A value greater 
than 1 indicates the opposite effect. 

The discrepancy parameters defined above are 
derived from mean specific parameters. It is 
equally possible to establish comparison para- 
meters from granulometric data obtained on pol- 
ished and fractured surfaces [20]. 

Consider, for example, a granulometric analysis 
of fractured crystals on a fracture surface and the 
same two-dimensional analysis on a polished sur- 
face. To obtain a discrepancy parameter between 
the measurements, we cannot use the frequencies 
but only the granulometries calculated in number 
of crystals per unit area, if the comparison is to 
have any significance. Then the ratio of the granul- 
ometries calculated in number of crystals per 
unit area, if the comparison is to have any signifi- 
cance. Then the ratio of the granulometries pro- 
rides a probability curve for fracture (Fig. 17). 
We define as comparison parameter the critical 
diameter, De ,  which is the size of  crystals with a 
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probability of fracture of 0.5. The choice of this 
value is justified by the fact that the probability 
curve varies rather rapidly for this value. The 
parameter D c can thus be calculated reasonably 
accurately, which would not be the case if one had 
taken a value for the probability of 1. In this case 
the granulometry can be expressed as the diameter 
of equivalent spheres using the Saltykov method, 
modified for granulometry in surface [20]. 

6. Mathematical morphology and 
quantitative fractography 

We shall discuss here briefly the contribution 
which mathematical morphology can make to 
quantitative fractography. 

6.1. Properties of variograms and 
covariograms 

In the majority of cases, quantitative analysis of a 
fracture surface using classical method is sufficient 
to describe the fracture morphology. However, 
no parameter hitherto employed is capable of 
describing the periodicity of a phenomenon, or 
of describing phenomena which occur at different 
magnifications. Thus one can find, in a fracture, 
a surface zone of principally transgranular fracture 
followed by zones of principally intergranular 
fracture. With this example, it is possible to 
utilize the properties of  the vafiograms of the 
regionalized function (for example Ss(inter- 
granular)) in introducing, into regular space, the 
fields of  measurements, and then measuring in 
each field the proportion of intergranular fracture. 

The regionalized covafiogram is calculated from 
the expression [4, 5] : 

y(h) = g~{[Ss(x + h) --Ss(x)]  2 } (28) 

The derivative at the origin of such a variogram 
[21] is equal to the number of times one can pene- 
trate the favoured zone for intergranular fracture 
per unit length, ATr, (intergranular zone). The mean 
size in the direction of analysis of these zones is 
thus: 

Ss (intergranular) 
r,2 (intergranular zone) = - 

Nr, (intergranular zone) 

(29) 

The measurement step h of such a vafiogram is 
to be corrected from equations in Table III giving 
L as a function of the type of fracture encoun- 
tered; for example for a random fracture: 

h = 4 h ' ,  (30) 
7T 

where h' is the projection of the step h on to the 
plane of analysis. 

The appearance of the vafiogram away from the 
origin shows that there are periodic phenomena of 
drift of  the specific parameter in the direction of 
analysis (Figs. 18 and 19). 

The example to be presented is not the only 
possibility of the variogram: it may be used with 
other specific parameters in the case where these 
other quantities are characteristics of the investi- 
gated regionalization. 

The covariogram is derived from the vafiogram. 
Often a particular covariogram is used in mathem- 
atical morphology, the geometric covariogram, 
as well as its probabilistic aspect, the covariance 
function C(h), [6, 22]. This function, of which 
the support is the point, is a function of every- 
thing or nothing. It corresponds to the probability 
of two points, separated by h, falling in the same 
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Figure 18 Variogram of a pseudoperiodic 
structure. 
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Figure 19 Variogram with drift of the 
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phase. This function is sensitive to the anisotropy 
of the surroundings. As are all measurements 
using linear analysis, it contains information on 
the imbrication of  the phases and on the periodic 
phenomena.  In the case o f  quantitative fracto- 
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graphy the measurements made on the phases can 
be extended to measurements on the features, 
considering each feature as an ent i ty .  The same 
type of  corrections used for the variogram must 
be used for the step h in the covariance function. 
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6.2. Closing of a fracture by a hexagonal 
structuring element 

Another possibility of using mathematical mor- 
phology to describe fracture consists in closing 
the fracture line by a hexagonal structuring 
element. This operation has already been described 
in the publications of Matheron [4] and Serra [6]. 
The closing by a two-dimensional structural ele- 
ment of the object X to be analysed, followed by 
the eroding operation of the dilated object by the 
same structuring element, which is expressed by: 

X B(r) = [X ~) B(r)] Q B(r) (31) 

where B(r) is the structuring element. 
The Figs. 20, 21 and 22 show the result of such 

a morphological transformation. It can be seen 
that the irregularities in Fig. 20 disappear after 
the closing operation. If the perimeter of such a 
shape is determined, before and after the closing 
operation, it can be seen that the length is much 
smaller after closing and that the perimeter de- 
creases for increasing structuring elements (in 
this case hexagonal). By studying the closing 
operation for increasing sizes of structuring ele- 
ments, which measures the perimeters of the 
transformed object, it is possible to establish the 
relationship (apparent per imeter)=f( log step of 
structuring element). This leads to the deter- 
mination of the fractal dimension of the object 
under consideration using a method of covering 
by a geometrical shape which is the structuring 
.element [18]. 

7. Available methods of measurement 
Generally the methods of image analysis can be 
subdivided into three groups: 

(1) manual analysis, 
(2) semi-automatic analysis, 
(3) automatic analysis. 

7.1. Manual analysis 
Manual analysis can be point, line or area, depend- 
ing on the specific quantity being investigated. It 
can be carried out, irrespective of the method of 
observation used, as soon as the image can be 
resolved by the human eye. It is a method which 
can be applied equally well to scanning electron 
microscope images or transmission electron 
microscope on replica. Manual methods can be 
used equally well to analyse a fracture line ob- 
served in the optical or scanning electron micro- 
scope. Unfortunately, although this is cheap, it 
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is long and tedious, particularly to establish the 
size distribution of particles. It cannot be applied 
to obtain the covariance or measure the fractal 
dimension of a fracture line. 

Generally to measure A~ or Ss, experience has 
shown that it is preferable to use a point method 
rather than a linear method [8]. Surface analysis 
is used only to count the number of objects. The 
majority of fractographic studies, undertaken to 
the present time, have used manual methods. 

7.2. Semi-automatic analysis 
The Zeiss TGZ 3 is a semi-automatic analyser, 
and can be used to determine the size distribution 
of particles, as the diameter of equivalent circles, 
by comparing the grain size with an illuminated 
variable size spot. It is well suited to this type of 
measurement, since the actual comparison is made 
by eye. The choice of an arithmetic or geometric 
classification is a further advantage since, for 
example, with a geometric progression of the class 
sizes it is possible to use the Saltykov correction 
[1,23] .  

For all other measurements there are numerous 
digitalizers on the market which enables data 
assessed by eye on the object table, to be fed 
automatically into a small computer. With a suit- 
able program the desired specific parameters can 
be evaluated [17]. There is one such table on 
the market coupled to a microprocessor and which 
provides characteristic parameters directly (Leitz, 
ASM Table) [24]. Such tables can be used also to 
obtain the fractal dimension of the fracture line 
using the Richardson method [14, 18], and also 
to calculate all the morphological characteristics 
of the fracture line. 

7.3. Automatic analysis 
It is not possible at the present time to analyse 
a fracture and determine specific parameters 
with the automatic analysers commercially avail- 
able. The detection of various objects and their 
discrimination is only possible if each family has 
the same degree of greyness, which is not the case 
in fractographic images. 

It is only possible to use the automatic analyser 
to determine the fractal dimension of a fracture 
line [18] when the analyser is or can be equipped 
to undertake the closing operation of a two-dimen- 
sional structuring element (for example with a 
Leitz TAS or a Cambridge Instrument QTM 720). 

There now exists a prototype model of an 



instrument called AT IV, devised by the Centre de 
Morphlogie Math6matique de Fontainebleau. With 
this automatic analyser it is possible to analyse 
complex images, after a point-by-point memoriza- 
tion of the detected image [25, 26]. 

8. Examples of applications 
As the conclusion of this study, and to show that 
quantitative fractography is an excellent experi- 
mental technique, we shall give some examples 
of its applications in solving certain practical 
problems and even to explain completely the 
mechanisms of fracture. 

In essence we have known for some time the 
relationships which exist between microstructural 
parameters and mechanical characteristics, as for 
example the Hall-Petch relationship. These laws 
are applicable particularly to plastic deformation. 
Complementary information on fracture is neces- 
sary to establish the fracture mechanism with any 
degree of certainty. 

fracture in the cobalt phase; a transgranular 
fracture in the carbide phase; and an intergranular 
fracture between neighbouring WC-WC crystals. 
The fracture had been caused by Vickers hardness 
tests. Mason and Kenny found that the proportion 
of transgranular fraction follows a law: 

4K [1 -- Vv(Co)] 
log AA (transgranular) = 

D 

(withK = Ct). 

They also found that the proportion ofintergranu- 
lar fracture was largest and that the proportion of 
fracture in the cobalt increases with the volume 
fraction of cobalt. They explain these results as 
follows: transgranular fracture occurs when inter- 
granular fracture is less probable (presence of 
large crystals). The increase of ductile fracture in 
the cobalt with cobalt composition is due to the 
local values of the modulus of elasticity and to 
the stress field in the cobalt zones. 

8.1. S t ruc ture  and f rac tography  of  W C - C o  
One of the first articles to show an application of 
quantitative fractography was that of Mason and 
Kenny [27]. In this article the authors measured 
first the microstructural parameters describing 
the microstructure of bulk tungsten carbide- 
cobalt materials, for example NL(WC), NA(WC), 
the distribution of the chord lengths using the 
method of Lord and Willis [28]. Other authors 
have measured for the same materials the mean 
free path in the cobalt phase and the contiguity 
of the carbide phase [29]. In this type of material, 
three types of fracture are encountered: a ductile 

8.2. Behaviour  o f  M C - M e  composi tes 
under high pressure 

We have determined the principal mechanical 
characteristics on the same types of material and 
related the characteristics to morphlogical changes 
as a result of mechanical tests. For example, 
we have studied the behaviour under high pressure 
(40 to 120kbar) of metal-carbide composites. 
WC-Co [30] composites were studied first, and 
then the tests repeated for other composites 
including TiC-Co and TiC-Ni [20, 31]. We 
observed that pressure induces slip in the WC 
crystals. The degree of slip is greatest for large 

Figure 23 Variation of the critical 
diameter of slip as a function of the 
applied pressure for different WC-Co 
materials. 
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Figure 24 Variation of the critical 
diameter of fracture as a function of 
the applied pressure for different 
TiC-Co and TiC-Ni  materials. 

crystals and high pressures. Using the TGZ 3 semi- 
automatic analyser, we measured the size distri- 
bution,on the surface of carbide crystals exhibiting 
slip and calculated the distribution Nv as the 
diameter of equivalent spheres, with the modified 
Saltykov method. This size distribution of slipped 
WC crystals has been compared to that in the bulk 
material. The ratio of the two distributions gives 
the probability of slip and the critical diameter of 
slip, as defined above. We have thus been able to 
establish a law of the type (Fig. 23): 

D e = K ' P  -~ + B 

where P is the applied pressure and D e the critical 
diameter. 

] 
~E 

z 

2000 

1500 

Figure 25  Variation of  the rupture 
stress in bending, ~rrf , as a function of  
the discrepancy parameter, 4 ,  for 
WC-Co materials. 
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In the case of TiC-Co and TiC-Ni, the same 
procedure was followed, but these materials are 
more brittle. The carbide crystals fracture under 
the influence of pressure. We have thus established, 
for this case, a critical diameter of fracture which 
leads to a law of the type (Fig. 24): 

D e = K ' P  - z  + B  

8.3. Behaviour  in bending of  W C - C o  
Similar quantitative analysis were carried out in 
a study of the behaviour of WC-Co composites 
[32, 33] subjected to bending or toughness tests. 

Initially the size distribution of particles was 
determined for the bulk material, then for the 
crystals observed on the fracture on a scanning 
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electron microscope image [32]. 
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Figure 26 Variation of the rupture 
stress in bending, %f, as a function of 
L~o//?WC for different w e - c o  
materials. (s mean free path in 
the cobalt phase; /3We, mean dia- 
meter of the tungsten carbide crys- 
tals). 

bend specimens, using the discrepancy parameter, 
obtained for the different materials show that 
there are fewer smaller crystals on a fracture sur- 
face than on a random section. A more complete 
study was undertaken, using different methods 
to determine the proportion of cobalt on the 
fracture surface (X-rays image, secondary electron) 
[8, 9] .  From a comparison of the various values 
obtained, it was obvious that the proportion of 
cobalt on the surface was greater than the volume 
fraction, but this increase is due principally to 
a thin layer of cobalt (X-rays image (W)). This 
difference in proportion of cobalt has been studied 
as a function of w e - C o  composition, for different 
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Figure 27 Variation of  the discrep- 0,2 
ancy parameter,  A, as a function of  
/]~o//~WC for different w e - C o  ma- 

terials. (Leo,  mean free path in the 0 
cobalt  phase; / ? w e ,  mean diameter 
of  the tungsten carbide crystals). 0 

A, described above [13]. The change of this 
discrepancy parameter was studied for un-notched 
specimens as function of the fracture stress (Fig. 
25) and the rupture stress as a function of the 
microstructural parameter L~o//?wc (this para- 
meter is the ratio of the square of the mean free 
path in the cobalt phase, Leo,  to the mean diam- 
eter of WC crystals,/3we ) (Fig. 26). The following 
conclusions can be drawn from the two curves: 

(1) The parameter L~o//?wc is a parameter 
which describes unambiguously the mechanical 
behaviour of different w e - C o  grades. 

(2) The change of A as function of o~ shows 
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that the strongest materials are those for which 
fracture occurs predominantly in the cobalt phase, 
which occurs at a well-defined value o f  f,~o//Swc 
(Fig. 27). 

The fracture line was analysed for these same 
materials, and the waviness index, as defined above, 
determined as well as the proportions o f  the various 
fracture types: LL (transgranular), Lr. (intergranu- 
lar), and LL (fracture in the cobalt). Using these 
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Figure 28 (a) Micrographs of fracture lines on WC-Co 
(25wt%,/)We = 2.2/~m) bend specimen, on the tensile 
polished face; (b) on the compression polished face. (c) 
Distribution curves of the WC crystals for WC-Co speci- 
men (25 wt %,/)we = 2.2/~m) fractured in bending. 

results, we showed that the waviness o f  fracture 
increases with increasing cobalt content, and was 
greater for fracture in tension than in compression. 

Furthermore the proportion o f  transgranular 
fracture is much higher in the outer surfaces. 
This may be explained by the fact that the crystals 
are more brittle here, due to the fact that the 
stresses are very asymmetric in the surface layers. 

Fig. 28 shows the size distribution of  crystals 
fractured on the various faces. It can be seen in 
particular, that it is the largest crystals which frac- 
ture most frequently. This effect is even more pro- 
nounced for a surface in tension, which confirms 
that it is at such faces that fracture is initiated in 
bending. 



Figure 29 Registration of 
the number of striations 
with the microdensito- 
meter for a ferritic steel, 
0.9% C, after Bathias. 

The same analysis was carried out on notched 
specimens in order to measure the critical stress 
intensity factor, KIC [33]. It  was found that 
fracture was principally intergranular and that 
the fraction of transgranular fracture exhibited a 
maximum for certain values of  / ,~o//)wc. It  
was likewise shown that Gic was a linear function 
of this combined parameter. 

8.4. Fracture of the oriented lamellar 
eutectic Ni /Ni3AI-Ni 3 Nb 

Some investigations have also been undertaken on 
the fracture of lamellar composites. Sheffler and 
co-workers [34] has shown recently that for 
eutectic lamellar Ni/Ni3A1-Ni3Nb the fracture 
path cannot be described by one type ofbehaviour, 
although they did make a specific measurement 
of this. It would be interesting to relate the mor- 
phology of the fracture line to the microstructure, 
particularly because the microstructure can be 
established easily with an automatic texture 
analyser, Leitz TAS, as we have shown in the 
case of directionally white cast iron [35, 36]. 

8.5. Fatigue striations in ferritic and 
austenitic steel 

As the last example of the application of image 
analysis to fractography, we have choosen the 
measurement of the size of fatigue striations. 

Bathias [37] has devised an automatic method 
of measuring the interval between the striations. 
He takes the photographic plates exposed in the 
electron microscope and analyses them with a 
microdensitometer equipped with a X Y  recorder. 
The striations are oriented perpendicular to the 
direction of plate displacement, so that when each 
striation passes the window of the reader, a peak 
is registered on the recorder (Fig. 29). The analysis 
of the diagrams enables the number of  peaks to 
be counted and the interval measured. 

9. Conc lus ion  
The various aspects of fractographic analysis 
discussed together with various examples em- 
phasize on the one hand what a powerful tool 
quantitative and stereological analysis is, and on 
the other hand the wide range of fields in which 
it can be applied. 
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